login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022194
Gaussian binomial coefficients [ n,11 ] for q = 2.
1
1, 4095, 11180715, 26167664835, 57162391576563, 120843139740969555, 251413193158549532435, 518946525150879134496915, 1066968301301093995246996371, 2189425218271613769209626653075, 4488323837657412597958687922896275
OFFSET
11,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..11} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
MATHEMATICA
QBinomial[Range[11, 30], 11, 2] (* Harvey P. Dale, Oct 21 2014 *)
PROG
(Sage) [gaussian_binomial(n, 11, 2) for n in range(11, 22)] # Zerinvary Lajos, May 25 2009
(Magma) r:=11; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
(PARI) r=11; q=2; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A321557 A321551 A161004 * A069387 A359085 A069413
KEYWORD
nonn
STATUS
approved