OFFSET
10,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 10..200
FORMULA
a(n) = Product_{i=1..10} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
MATHEMATICA
Table[QBinomial[n, 10, 2], {n, 10, 40}] (* Vincenzo Librandi, Aug 03 2016 *)
PROG
(Sage) [gaussian_binomial(n, 10, 2) for n in range(10, 21)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
(PARI) r=10; q=2; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved