%I #12 May 31 2018 08:16:18
%S 1,1,1,1,22,1,1,463,463,1,1,9724,204646,9724,1,1,204205,90258610,
%T 90258610,204205,1,1,4288306,39804251215,835975245820,39804251215,
%U 4288306,1,1,90054427,17553679074121,7742006555790235
%N Triangle of Gaussian binomial coefficients [ n,k ] for q = 21.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H G. C. Greubel, <a href="/A022185/b022185.txt">Rows n=0..50 of triangle, flattened</a>
%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%F T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=21. - _G. C. Greubel_, May 30 2018
%t Table[QBinomial[n,k,21], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 21; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, May 30 2018 *)
%o (PARI) {q=21; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))};
%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 30 2018
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_