login
A022175
Triangle of Gaussian binomial coefficients [ n,k ] for q = 11.
18
1, 1, 1, 1, 12, 1, 1, 133, 133, 1, 1, 1464, 16226, 1464, 1, 1, 16105, 1964810, 1964810, 16105, 1, 1, 177156, 237758115, 2617126920, 237758115, 177156, 1, 1, 1948717, 28768909071, 3483633688635, 3483633688635
OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=11. - G. C. Greubel, May 28 2018
MATHEMATICA
Table[QBinomial[n, k, 11], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 11; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 28 2018 *)
PROG
(PARI) {q=11; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 28 2018
CROSSREFS
Sequence in context: A142460 A156280 A166962 * A340427 A176627 A015129
KEYWORD
nonn,tabl
STATUS
approved