login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022106
Fibonacci sequence beginning 1, 16.
3
1, 16, 17, 33, 50, 83, 133, 216, 349, 565, 914, 1479, 2393, 3872, 6265, 10137, 16402, 26539, 42941, 69480, 112421, 181901, 294322, 476223, 770545, 1246768, 2017313, 3264081, 5281394, 8545475, 13826869
OFFSET
0,2
COMMENTS
a(n-1)=sum(P(16;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=15. These are the SW-NE diagonals in P(16;n,k), the (16,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
FORMULA
a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=16. a(-1):=15.
G.f.: (1+15*x)/(1-x-x^2).
MATHEMATICA
a={}; b=1; c=16; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {1, 16}, 40] (* Harvey P. Dale, Jun 22 2016 *)
PROG
(Magma) a0:=1; a1:=16; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
a(n) = A109754(15, n+1) = A101220(15, 0, n+1).
Sequence in context: A151977 A252492 A319281 * A041518 A042195 A041520
KEYWORD
nonn,easy
STATUS
approved