login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020708
Pisot sequences E(4,9), P(4,9).
2
4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064, 11169, 24634, 54332, 119833, 264300, 582932, 1285697, 2835694, 6254320, 13794337, 30424368, 67103056, 148000449, 326425266, 719953588, 1587907625, 3502240516, 7724434620, 17036776865, 37575794246, 82876023112
OFFSET
0,1
LINKS
Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
FORMULA
a(n) = 2*a(n-1) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (4+x+2*x^2) / (1-2*x-x^3). - Colin Barker, Jun 05 2016
Theorem: E(4,9) satisfies a(n) = 2 a(n - 1) + a(n - 3) for n >= 3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
MATHEMATICA
RecurrenceTable[{a[0] == 4, a[1] == 9, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1/2]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *)
LinearRecurrence[{2, 0, 1}, {4, 9, 20}, 40] (* Harvey P. Dale, Dec 19 2022 *)
PROG
(Magma) Exy:=[4, 9]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..40]]; // Bruno Berselli, Feb 05 2016
(PARI) Vec((4+x+2*x^2) / (1-2*x-x^3) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
This is a subsequence of A008998.
See A008776 for definitions of Pisot sequences.
Sequence in context: A132175 A019493 A019492 * A345192 A109110 A366726
KEYWORD
nonn
STATUS
approved