login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020486
Average of squares of divisors is an integer: numbers k such that sigma_0(k) divides sigma_2(k).
15
1, 3, 4, 5, 7, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 100, 101, 103, 105, 107, 108, 109, 111, 112, 113, 115, 116
OFFSET
1,2
COMMENTS
If sigma_2(k)/sigma_0(k) is a square then k is an RMS-number (A140480). - Ctibor O. Zizka, Jul 14 2008
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
FORMULA
A001157(k) mod A000005(k) = 0. - Reinhard Zumkeller, Jan 15 2013
MATHEMATICA
Select[Range[150], Divisible[DivisorSigma[2, #], DivisorSigma[0, #]]&] (* Harvey P. Dale, May 03 2011 *)
PROG
(Haskell)
a020486 n = a020486_list !! (n-1)
a020486_list = filter (\x -> a001157 x `mod` a000005 x == 0) [1..]
-- Reinhard Zumkeller, Jan 15 2013
(Magma) [n: n in [1..120] | IsZero(DivisorSigma(2, n) mod NumberOfDivisors(n))]; // Bruno Berselli, Apr 11 2013
(PARI) is(n)=sigma(n, 2)%numdiv(n)==0 \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
KEYWORD
nonn
STATUS
approved