login
A020474
A Motzkin triangle: a(n,k), n >= 2, 2 <= k <= n, = number of complete, strictly subdiagonal staircase functions.
16
1, 0, 1, 0, 1, 2, 0, 0, 2, 4, 0, 0, 1, 5, 9, 0, 0, 0, 3, 12, 21, 0, 0, 0, 1, 9, 30, 51, 0, 0, 0, 0, 4, 25, 76, 127, 0, 0, 0, 0, 1, 14, 69, 196, 323, 0, 0, 0, 0, 0, 5, 44, 189, 512, 835, 0, 0, 0, 0, 0, 1, 20, 133, 518, 1353, 2188, 0, 0, 0, 0, 0, 0, 6, 70, 392, 1422, 3610, 5798, 0, 0, 0, 0
OFFSET
2,6
COMMENTS
T(n,k) = number of Dyck n-paths that start UU, contain no DUDU and no subpath of the form UUPDD with P a nonempty Dyck path and whose terminal descent has length n-k+2. For example, T(5,4)=2 counts UUDUUDUDDD, UUUDDUUDDD (each ending with exactly n-k+2=3 Ds). - David Callan, Sep 25 2006
LINKS
M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013.
J. L. Chandon, J. LeMaire and J. Pouget, Denombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80.
R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301.
Paul Peart and Wen-jin Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Appl. Math. 98 (2000), 255-263.
FORMULA
a(n,k) = a(n,k-1) + a(n-1,k-1) + a(n-2,k-1), n > k >= 2.
EXAMPLE
Triangle begins:
1
0, 1
0, 1, 2
0, 0, 2, 4
0, 0, 1, 5, 9
0, 0, 0, 3, 12, 21
0, 0, 0, 1, 9, 30, 51
0, 0, 0, 0, 4, 25, 76, 127
0, 0, 0, 0, 1, 14, 69, 196, 323
MAPLE
M:=16; T:=Array(0..M, 0..M, 0);
T[0, 0]:=1; T[1, 1]:=1;
for i from 1 to M do T[i, 0]:=0; od:
for n from 2 to M do for k from 1 to n do
T[n, k]:= T[n, k-1]+T[n-1, k-1]+T[n-2, k-1];
od: od;
rho:=n->[seq(T[n, k], k=0..n)];
for n from 0 to M do lprint(rho(n)); od: # N. J. A. Sloane, Apr 11 2020
MATHEMATICA
a[2, 2]=1; a[n_, k_]/; Not[n>2 && 2<=k<=n] := 0; a[n_, k_]/; (n>2 && 2<=k<=n) := a[n, k] = a[n, k-1] + a[n-1, k-1] + a[n-2, k-1]; Table[a[n, k], {n, 2, 10}, {k, 2, n}] (* David Callan, Sep 25 2006 *)
PROG
(PARI) T(n, k)=if(n==0&&k==0, 1, if(n<=0||k<=0||n<k, 0, T(n, k-1)+T(n-1, k-1)+T(n-2, k-1))) \\ Ralf Stephan
(Haskell)
a020474 n k = a020474_tabl !! (n-2) !! (k-2)
a020474_row n = a020474_tabl !! (n-2)
a020474_tabl = map fst $ iterate f ([1], [0, 1]) where
f (us, vs) = (vs, scanl (+) 0 ws) where
ws = zipWith (+) (us ++ [0]) vs
-- Reinhard Zumkeller, Jan 03 2013
(Sage)
@cached_function
def T(n, k):
if k<0 or n<k: return 0
if k==0: return 0^n
return T(n, k-1) + T(n-1, k-1) + T(n-2, k-1)
for n in (0..8): print([T(n, k) for k in (0..n)]) # Peter Luschny, Jun 23 2015
CROSSREFS
Main diagonal is A001006.
Other diagonals include A002026, A005322, A005323, A005324, A005325. Row sums are (essentially) A005043.
The triangle version of A062105 has the same recurrence with different initial conditions. - N. J. A. Sloane, Apr 11 2020
Sequence in context: A329790 A343649 A195581 * A135589 A244312 A158122
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from James A. Sellers, Feb 04 2000
STATUS
approved