login
A019987
Decimal expansion of tangent of 89 degrees.
12
5, 7, 2, 8, 9, 9, 6, 1, 6, 3, 0, 7, 5, 9, 4, 2, 4, 6, 8, 7, 2, 7, 8, 1, 4, 7, 5, 3, 7, 1, 1, 2, 5, 7, 7, 9, 8, 0, 2, 1, 7, 5, 2, 2, 2, 3, 5, 1, 4, 3, 9, 2, 6, 4, 7, 2, 5, 8, 1, 1, 0, 3, 6, 0, 6, 5, 2, 9, 2, 2, 8, 9, 3, 6, 4, 7, 9, 1, 9, 3, 0, 6, 7, 2, 4, 1, 6, 2, 8, 2, 2, 0, 6, 8, 3, 8, 8, 0, 6
OFFSET
2,1
COMMENTS
Also cotangent of 1 degree. - Mohammad K. Azarian, Jan 21 2006
An algebraic integer of degree 24. - Charles R Greathouse IV, Aug 27 2017
The least k > 0 such that floor(cot(1°)*10^k) is prime is k = 39. - M. F. Hasler, May 19 2023
LINKS
Art of Problem Solving, USAMO 1996, Problem 1.
Mohammad K. Azarian, Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 36, No. 5, November 2005, p. 413-414; Solution, College Mathematics Journal, Vol. 37, No. 5, November 2006, pp. 394-395.
FORMULA
Equals (Sum_{k=1..90} 2*k*sin(2*k)) / 90, with k in degrees (link USAMO 1996). - Bernard Schott, Apr 30 2022
EXAMPLE
57.28996...
MAPLE
evalf(cot(Pi/180), 100); # Bernard Schott, Apr 30 2022
MATHEMATICA
First[RealDigits[Cot[Pi/180], 10, 100]] (* Paolo Xausa, Apr 23 2024 *)
PROG
(PARI) tan(89*Pi/180) \\ Charles R Greathouse IV, Aug 27 2017
CROSSREFS
Cf. A073449, A019899-A019986 (same for 1, ..., 88 degrees).
Sequence in context: A153110 A099283 A368663 * A072097 A259070 A110937
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Aug 19 2008 at the suggestion of R. J. Mathar
STATUS
approved