login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Poincaré series [or Poincare series] for depths of roots in a certain root system.
1

%I #34 Feb 10 2020 01:36:34

%S 4,4,5,6,8,11,15,21,30,43,62,90,131,191,279,408,597,874,1280,1875,

%T 2747,4025,5898,8643,12666,18562,27203,39867,58427,85628,125493,

%U 183918,269544,395035,578951,848493,1243526,1822475,2670966,3914490,5736963,8407927

%N Poincaré series [or Poincare series] for depths of roots in a certain root system.

%D Posting to sci.math.research by dima(AT)win.tue.nl (Dmitrii V. Pasechnik), Oct 28 1996.

%H Vincenzo Librandi, <a href="/A019527/b019527.txt">Table of n, a(n) for n = 1..1000</a>

%H D. Pasechnik, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&amp;threadID=561556&amp;messageID=1681290#1681290">Poincare series for the depths of roots in a root system</a>, Sci. Math. Research posting Oct 28 1996.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-1).

%F a(n) = 2*a(n-1)-a(n-2)+a(n-3)-a(n-4), for n>5.

%F G.f.: x*(x^4-4*x^3+x^2-4*x+4) / ((x-1)*(x^3+x-1)). - _Colin Barker_, Sep 27 2013

%F a(n) = a(n-1) + a(n-3) - 2, for n>4. - _Greg Dresden_, Feb 09 2020

%t CoefficientList[Series[(x^4 - 4 x^3 + x^2 - 4 x + 4)/((x - 1) (x^3 + x - 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 16 2013 *)

%t LinearRecurrence[{2,-1,1,-1},{4,4,5,6,8},50] (* _Harvey P. Dale_, Oct 11 2019 *)

%o (PARI) Vec(x*(x^4-4*x^3+x^2-4*x+4)/((x-1)*(x^3+x-1)) + O(x^100)) \\ _Colin Barker_, Sep 27 2013

%K nonn,easy

%O 1,1

%A _Robert G. Wilson v_

%E More terms from _Colin Barker_, Sep 27 2013