login
A017827
a(n) = a(n-4) + a(n-5), with a(0)=1, a(1)=a(2)=a(3)=0, a(4)=1.
14
1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 4, 6, 4, 2, 5, 10, 10, 6, 7, 15, 20, 16, 13, 22, 35, 36, 29, 35, 57, 71, 65, 64, 92, 128, 136, 129, 156, 220, 264, 265, 285, 376, 484, 529, 550, 661, 860, 1013, 1079, 1211, 1521, 1873, 2092, 2290, 2732, 3394, 3965
OFFSET
0,10
FORMULA
G.f.: 1/(1-x^4-x^5).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k). - Seiichi Manyama, Mar 06 2019
MATHEMATICA
CoefficientList[Series[1/(1-x^4-x^5), {x, 0, 70}], x] (* Zerinvary Lajos, Mar 22 2007 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/(1-x^4-x^5)) \\ G. C. Greubel, Mar 05 2019
(Magma) I:=[1, 0, 0, 0, 1]; [n le 5 select I[n] else Self(n-4) +Self(n-5): n in [1..70]]; // G. C. Greubel, Mar 05 2019
(Sage) (1/(1-x^4-x^5)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Mar 05 2019
(GAP) a:=[1, 0, 0, 0, 1];; for n in [6..70] do a[n]:=a[n-4]+a[n-5]; od; a; # G. C. Greubel, Mar 05 2019
CROSSREFS
Sequence in context: A349839 A247919 A127839 * A279778 A094266 A286335
KEYWORD
nonn,easy
EXTENSIONS
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999
STATUS
approved