OFFSET
0,10
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
E. Wilson, The Scales of Mt. Meru
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1)
FORMULA
G.f.: 1/(1-x^4-x^5).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k). - Seiichi Manyama, Mar 06 2019
MATHEMATICA
CoefficientList[Series[1/(1-x^4-x^5), {x, 0, 70}], x] (* Zerinvary Lajos, Mar 22 2007 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/(1-x^4-x^5)) \\ G. C. Greubel, Mar 05 2019
(Magma) I:=[1, 0, 0, 0, 1]; [n le 5 select I[n] else Self(n-4) +Self(n-5): n in [1..70]]; // G. C. Greubel, Mar 05 2019
(Sage) (1/(1-x^4-x^5)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Mar 05 2019
(GAP) a:=[1, 0, 0, 0, 1];; for n in [6..70] do a[n]:=a[n-4]+a[n-5]; od; a; # G. C. Greubel, Mar 05 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999
STATUS
approved