login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017705
Numerator of sum of -21st powers of divisors of n.
3
1, 2097153, 10460353204, 4398048608257, 476837158203126, 609360030634117, 558545864083284008, 9223376434903384065, 109418989141972712413, 500000238418580150139, 7400249944258160101212, 11501285462682212701357, 247064529073450392704414, 146419516812481413403653
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017706(n) = zeta(21).
Dirichlet g.f. of a(n)/A017706(n): zeta(s)*zeta(s+21).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017706(k) = zeta(22). (End)
MATHEMATICA
Table[Numerator[DivisorSigma[21, n]/n^21], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 21)/n^21)) \\ G. C. Greubel, Nov 05 2018
(Magma) [Numerator(DivisorSigma(21, n)/n^21): n in [1..20]]; // G. C. Greubel, Nov 05 2018
CROSSREFS
Cf. A017706 (denominator).
Sequence in context: A017706 A010809 A323659 * A013969 A036099 A253058
KEYWORD
nonn,frac
STATUS
approved