login
A017341
a(n) = 10*n + 6.
27
6, 16, 26, 36, 46, 56, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 166, 176, 186, 196, 206, 216, 226, 236, 246, 256, 266, 276, 286, 296, 306, 316, 326, 336, 346, 356, 366, 376, 386, 396, 406, 416, 426, 436, 446, 456, 466, 476, 486, 496, 506, 516, 526, 536
OFFSET
0,1
COMMENTS
Number of 4 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Numbers k such that k and (4^h)^k end with the same digit, where h > 0. - Bruno Berselli, Dec 13 2018
LINKS
Tanya Khovanova, Recursive Sequences
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
FORMULA
a(n) = 2*a(n-1) - a(n-2) with n>1, a(0)=6, a(1)=16. - Vincenzo Librandi, May 29 2011
a(n) = (n+1)*A016861(n+1) - n*A016861(n). - Bruno Berselli, Jan 18 2013
From Stefano Spezia, May 31 2021: (Start)
G.f.: 2*(3 + 2*x)/(1 - x)^2.
E.g.f.: 2*(3 + 5*x)*exp(x). (End)
MATHEMATICA
Range[6, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
PROG
(Magma) [10*n+6: n in [0..60]]; // Vincenzo Librandi, May 29 2011
(PARI) a(n)=10*n+6 \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
Cf. A000400 (powers of 6).
Sequence in context: A283609 A043513 A277593 * A232491 A191157 A222180
KEYWORD
nonn,easy
STATUS
approved