login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016759
a(n) = (2*n + 1)^7.
7
1, 2187, 78125, 823543, 4782969, 19487171, 62748517, 170859375, 410338673, 893871739, 1801088541, 3404825447, 6103515625, 10460353203, 17249876309, 27512614111, 42618442977, 64339296875, 94931877133, 137231006679, 194754273881, 271818611107, 373669453125, 506623120463
OFFSET
0,2
LINKS
Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, Preprint, 2012.
Philippe A. J. G. Chevalier, A "table of Mendeleev" for physical quantities?, Slides from a talk, May 14 2014, Leuven, Belgium.
FORMULA
a(n) = A001015(A005408(n)). - Michel Marcus, Mar 07 2016
G.f.: (1+x)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1)/(x-1)^8. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=0} 1/a(n) = 127*zeta(7)/128.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/184320 (A258814). (End)
MATHEMATICA
Table[(2*n+1)^7, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 2187, 78125, 823543, 4782969, 19487171, 62748517, 170859375}, 20] (* Harvey P. Dale, Jul 09 2019 *)
PROG
(Magma) [(2*n+1)^7: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
(PARI) a(n) = (2*n+1)^7; \\ Michel Marcus, Mar 07 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved