OFFSET
0,1
LINKS
FORMULA
log(5/2) = 2*Sum_{n >= 1} 1/(n*P(n, 7/3)*P(n-1, 7/3)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(5/2) = 0.916290731874155065183527(19...), correct to 24 decimal places. - Peter Bala, Mar 18 2024
EXAMPLE
0.916290731874155065183527211768011071450101219908262467791967881980785...
MATHEMATICA
RealDigits[Log[5/2], 10, 120][[1]] (* Vincenzo Librandi, Apr 07 2020 *)
PROG
(PARI) default(realprecision, 20080); x=10*log(5/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b016579.txt", n, " ", d)); \\ Harry J. Smith, May 25 2009
(Magma) SetDefaultRealField(RealField(100)); Log(5/2); // Vincenzo Librandi, Apr 07 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Leading zero removed and offset adjusted by R. J. Mathar, Feb 06 2009
STATUS
approved