login
A016238
Expansion of 1/((1-x)*(1-5*x)*(1-11*x)).
2
1, 17, 218, 2554, 28875, 321531, 3556372, 39217748, 431883509, 4753160005, 52296967086, 575327673102, 6328909579903, 69619531257839, 765822473230760, 8424085352511016, 92665129612484457, 1019317379411645433, 11212495941899681794, 123337479202754409890
OFFSET
0,2
FORMULA
a(n) = 16*a(n-1) - 55*a(n-2) + 1 for n>1, a(0)=1, a(1)=17. - Vincenzo Librandi, Feb 10 2011
a(n) = 17*a(n-1) - 71*a(n-2) + 55*a(n-3). - Vincenzo Librandi, Aug 23 2018
a(n) = (2*11^(n+2) - 5^(n+3) + 3)/120. - Bruno Berselli, Aug 23 2018
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 5 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 23 2018 *)
Table[(2 11^(n + 2) - 5^(n + 3) + 3)/120, {n, 0, 20}] (* Bruno Berselli, Aug 23 2018 *)
PROG
(Magma) I:=[1, 17]; [n le 2 select I[n] else 16*Self(n-1)-55*Self(n-2)+1: n in [1..30]]; // Vincenzo Librandi, Aug 23 2018
(Magma) [(2*11^(n+2)-5^(n+3)+3)/120: n in [0..20]]; // Bruno Berselli, Aug 23 2018
CROSSREFS
Sequence in context: A016185 A125452 A322538 * A016181 A285233 A063043
KEYWORD
nonn,easy
STATUS
approved