login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015468
q-Fibonacci numbers for q=10.
14
0, 1, 1, 11, 111, 11111, 1121111, 1112221111, 1122223221111, 11123333333221111, 112233445444433221111, 11123445566666555433221111, 1122345577889898877665433221111, 1112345679012233433220988765433221111
OFFSET
0,4
LINKS
FORMULA
a(n) = a(n-1) + 10^(n-2) a(n-2).
MAPLE
q:=10; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*10^(n-2)}, a, {n, 20}] (* Vincenzo Librandi, Nov 09 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 10], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
PROG
(Magma) [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(10^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
(PARI) q=10; m=20; v=concat([0, 1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 17 2019
(Sage)
def F(n, q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n, 10) for n in (0..20)] # G. C. Greubel, Dec 17 2019
(GAP) q:=10;; a:=[0, 1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
CROSSREFS
q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), A015460 (q=3), A015461 (q=4),
A015462 (q=5), A015463 (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), this sequence (q=10), A015469 (q=11), A015470 (q=12).
Sequence in context: A261269 A031974 A117293 * A037842 A131293 A108047
KEYWORD
nonn,easy
STATUS
approved