login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015418
Gaussian binomial coefficient [ n,11 ] for q=-11.
2
1, -261535698060, 75241013495730790109766, -21451022788016578429723510655178620, 6120645196266098901030880937026524413510456541, -1746280663134874755499501790878094901668461626016352027280
OFFSET
11,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..11} ((-11)^(n-i+1)-1)/((-11)^i-1). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 11, -11], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 11, -11) for n in range(11, 16)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A034618 A226858 A216904 * A271366 A257659 A339189
KEYWORD
sign,easy
STATUS
approved