login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015369
Gaussian binomial coefficient [ n,8 ] for q=-12.
13
1, 396906181, 171855836163195541, 73852125402551558141191381, 31756593605318274408653251348629973, 13654699102424414895934644240803700147539413, 5871272644707452307243912611380074655778555267227093
OFFSET
8,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..8} ((-12)^(n-i+1)-1)/((-12)^i-1). - M. F. Hasler, Nov 03 2012
MAPLE
A015369:=n->mul(((-12)^(n-i+1)-1)/((-12)^i-1), i=1..8): seq(A015369(n), n=8..20); # Wesley Ivan Hurt, Jan 29 2017
MATHEMATICA
Table[QBinomial[n, 8, -12], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
PROG
(Sage) [gaussian_binomial(n, 8, -12) for n in range(8, 14)] # Zerinvary Lajos, May 24 2009
(Magma) r:=8; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
(PARI) A015369(n, r=8, q=-12)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015370. - M. F. Hasler, Nov 03 2012
Sequence in context: A058125 A175280 A271022 * A321138 A103773 A172602
KEYWORD
nonn,easy
STATUS
approved