OFFSET
8,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 8..200
Index entries for linear recurrences with constant coefficients, signature (4921,12105660,-8513737740,-2091825362718,169437854380158,4524549298283340,-42209826451809660,-112576695670863081,150094635296999121).
FORMULA
a(n) = Product_{i=1..8} ((-3)^(n-i+1)-1)/((-3)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 8, -3], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
PROG
(Sage) [gaussian_binomial(n, 8, -3) for n in range(8, 18)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
(PARI) A015357(n, r=8, q=-3)=prod(i=1, r, (1-q^(n-i+1))/(1-q^i)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved