login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015357
Gaussian binomial coefficient [ n,8 ] for q=-3.
13
1, 4921, 36321901, 229798289941, 1526550040078063, 9974653139743515223, 65533580739687859229563, 429769342296322230713871283, 2820146424148466477944423359046, 18502040831058043147238631145734166
OFFSET
8,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4921,12105660,-8513737740,-2091825362718,169437854380158,4524549298283340,-42209826451809660,-112576695670863081,150094635296999121).
FORMULA
a(n) = Product_{i=1..8} ((-3)^(n-i+1)-1)/((-3)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 8, -3], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
PROG
(Sage) [gaussian_binomial(n, 8, -3) for n in range(8, 18)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
(PARI) A015357(n, r=8, q=-3)=prod(i=1, r, (1-q^(n-i+1))/(1-q^i)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Sequence in context: A043480 A028550 A091878 * A241934 A185850 A260939
KEYWORD
nonn,easy
STATUS
approved