login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015354
Gaussian binomial coefficient [ n,7 ] for q = -12.
2
1, -33075515, 1193443303932565, -42738498397393357626155, 1531471524472711661173885667797, -54875173091354091477849994502919434795, 1966277324678482270775562667263264108238642645, -70455269606355713779351701809782497716434153197609515
OFFSET
7,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
MATHEMATICA
QBinomial[Range[7, 20], 7, -12] (* Harvey P. Dale, Mar 17 2012 *)
PROG
(Sage) [gaussian_binomial(n, 7, -12) for n in range(7, 13)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
CROSSREFS
Sequence in context: A206043 A157080 A157081 * A256356 A338607 A153324
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
EXTENSIONS
More terms from Harvey P. Dale, Mar 17 2012
STATUS
approved