login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015353
Gaussian binomial coefficient [ n,7 ] for q = -11.
2
1, -17863240, 351004879413684, -6834956902420811530200, 133203071884610819994409432410, -2595734922068255016665440444288632600, 50583558850117484638411502782868591609069220
OFFSET
7,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
MATHEMATICA
Table[QBinomial[n, 7, -11], {n, 7, 16}] (* Vincenzo Librandi, Nov 02 2012 *)
PROG
(Sage) [gaussian_binomial(n, 7, -11) for n in range(7, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
CROSSREFS
Sequence in context: A372694 A159192 A154875 * A083619 A257550 A282670
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved