login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015350
Gaussian binomial coefficient [ n,7 ] for q = -10.
2
1, -9090909, 91827363728191, -917356280909173462809, 9174480257209191175298447191, -91743885133148835462057759420652809, 917439768771348869854580597622587770347191
OFFSET
7,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
MATHEMATICA
Table[QBinomial[n, 7, -10], {n, 7, 20}] (* Harvey P. Dale, Mar 22 2012 *)
PROG
(Sage) [gaussian_binomial(n, 7, -10) for n in range(7, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 06 2016
CROSSREFS
Sequence in context: A105012 A186139 A335581 * A233613 A172620 A172711
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved