login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015333
Gaussian binomial coefficient [ n,6 ] for q = -10.
2
1, 909091, 918273728191, 917356372736537191, 917448117456547208447191, 917438943076290926712489347191, 917439860515234003003416059680347191, 917439768771348869854580597622587770347191
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
G.f.: x^6/((1-x)*(1+10*x)*(1-100*x)*(1+1000*x)*(1-10000*x)*(1+100000*x)*(1-1000000*x)). - Vincenzo Librandi, Oct 30 2012
MATHEMATICA
Table[QBinomial[n, 6, -10], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -10) for n in range(6, 14)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A348078 A348101 A179735 * A141461 A035793 A102503
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved