login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015326
Gaussian binomial coefficient [ n,6 ] for q = -4.
3
1, 3277, 14317213, 57741320029, 237435704507485, 971588061067577437, 3980596286193864759389, 16303527542855381993658461, 66780267552779682073190144093, 273530932713230996784935699290205
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3277, 3578484, -902879040, -57784258560, 938078109696, 3518651957248, -4398046511104).
FORMULA
G.f.: x^6 / ( (x-1)*(4096*x-1)*(256*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 6, -4], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -4) for n in range(6, 16)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A293626 A152506 A309284 * A252074 A281294 A043472
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved