login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015288
Gaussian binomial coefficient [ n,4 ] for q = -3.
2
1, 61, 5551, 433771, 35569222, 2869444942, 232740363922, 18843459775162, 1526550040078063, 123644349019377043, 10015359787639069513, 811239619864365082573, 65710531328480659504924
OFFSET
4,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
G.f.: -x^4 / ( (x-1)*(27*x+1)*(81*x-1)*(9*x-1)*(3*x+1) ). - R. J. Mathar, Aug 03 2016
MATHEMATICA
Table[QBinomial[n, 4, -3], {n, 4, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
PROG
(Sage) [gaussian_binomial(n, 4, -3) for n in range(4, 17)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
CROSSREFS
Sequence in context: A165259 A181636 A167736 * A219113 A210686 A103915
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved