login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015281
Gaussian binomial coefficient [ n,3 ] for q = -12.
2
1, -1595, 2775445, -4793193515, 8283038077141, -14313032243145515, 24732928003956401365, -42738498397393357626155, 73852125402551558141191381, -127616472670861852065241422635
OFFSET
3,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1595,231420,2756160,-2985984).
FORMULA
a(n) = Product_{i=1..3} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - Vincenzo Librandi, Aug 02 2016
G.f.: x^3 / ( (x-1)*(12*x+1)*(1728*x+1)*(144*x-1) ). - R. J. Mathar, Aug 03 2016
MATHEMATICA
Table[QBinomial[n, 3, -12], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
PROG
(Sage) [gaussian_binomial(n, 3, -12) for n in range(3, 13)] # Zerinvary Lajos, May 27 2009
(Magma) r:=3; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
CROSSREFS
Sequence in context: A316336 A028893 A029561 * A132654 A224946 A316335
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved