login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015278
Gaussian binomial coefficient [ n,3 ] for q = -10.
2
1, -909, 918191, -917272809, 917364637191, -917355454462809, 917356372736537191, -917356280909173462809, 917356290091909926537191, -917356289173636281073462809, 917356289265463645628926537191
OFFSET
3,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
G.f.: x^3/((1-x)*(1+10*x)*(1-100*x)*(1+1000*x)). - Bruno Berselli, Oct 30 2012
a(n) = (-1 + 91*10^(2n-3) + (-1)^n*10^(n-2)*(91-10^(2n-1)))/1090089. - Bruno Berselli, Oct 30 2012
a(n) = product(((-10)^(n-i+1)-1)/((-10)^i-1), i=1..3) (by definition). - Vincenzo Librandi, Aug 02 2016
MATHEMATICA
Table[QBinomial[n, 3, -10], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
PROG
(Sage) [gaussian_binomial(n, 3, -10) for n in range(3, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=3; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
CROSSREFS
Sequence in context: A252136 A216930 A332190 * A352441 A210170 A068261
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved