login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015264
Gaussian binomial coefficient [ n,2 ] for q = -12.
3
1, 133, 19285, 2775445, 399683221, 57554154133, 8287800951445, 1193443303932565, 171855836163195541, 24747240402737283733, 3563602618051323347605, 513158776998704708174485, 73894863887821708223693461
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
G.f.: x^2/((1-x)*(1+12*x)*(1-144*x)).
a(2) = 1, a(3) = 133, a(4) = 19285, a(n) = 133*a(n-1) + 1596*a(n-2) - 1728*a(n-3). - Vincenzo Librandi, Oct 28 2012
MATHEMATICA
Table[QBinomial[n, 2, -12], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
PROG
(Sage) [gaussian_binomial(n, 2, -12) for n in range(2, 14)] # Zerinvary Lajos, May 27 2009
(Magma) I:=[1, 133, 19285]; [n le 3 select I[n] else 133*Self(n-1)+1596*Self(n-2)-1728*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
CROSSREFS
Sequence in context: A129050 A129049 A281496 * A055579 A191715 A208626
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved