login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015251
Gaussian binomial coefficient [ n,2 ] for q = -3.
4
1, 7, 70, 610, 5551, 49777, 448540, 4035220, 36321901, 326882347, 2941985410, 26477735830, 238300021051, 2144698993717, 19302294530680, 173720640014440, 1563485792415001, 14071372034879887
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
G.f.: x^2/[(1-x)(1+3x)(1-9x)].
a(n) = 10*a(n-1) - 9*a(n-2) + (-1)^n *3^(n-2), n >= 4. - Vincenzo Librandi, Mar 20 2011
a(n) = 7*a(n-1) + 21*a(n-2) - 27*a(n-3), n >= 3. - Vincenzo Librandi, Mar 20 2011
a(n) = (1/96)*(2*(-1)^n*3^n - 3 + 9^n). - R. J. Mathar, Mar 21 2011
MATHEMATICA
Table[QBinomial[n, 2, -3], {n, 2, 25}] (* G. C. Greubel, Jul 30 2016 *)
PROG
(Sage) [gaussian_binomial(n, 2, -3) for n in range(2, 18)] # Zerinvary Lajos, May 28 2009
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -27, 21, 7]^(n-2)*[1; 7; 70])[1, 1] \\ Charles R Greathouse IV, Jul 30 2016
CROSSREFS
Sequence in context: A063416 A201065 A043034 * A299870 A196662 A249750
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved