login
A015052
a(n) is the smallest positive integer m such that m^5 is divisible by n.
9
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
OFFSET
1,2
COMMENTS
A multiplicative companion function n/a(n) = 1,1,1,2,1,1,1,4,3,1,1,2,1,1,1,8,1,... can be defined using the 5th instead of the 4th power in A000190, which differs from A000190 and also from A003557. - R. J. Mathar, Jul 14 2012
LINKS
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114.
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114.
Kevin A. Broughan, Relationship between the integer conductor and k-th root functions, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.
Kevin A. Broughan, Relaxations of the ABC Conjecture using integer k'th roots, New Zealand J. Math. 35(2) (2006), 121-136.
Henry Ibstedt, Surfing on the Ocean of Numbers, Erhus Univ. Press, Vail, 1997.
Florentin Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse, Bucharest, 1996.
Eric Weisstein's World of Mathematics, Smarandache Ceil Function.
FORMULA
Multiplicative with a(p^e) = p^(ceiling(e/5)). - Christian G. Bower, May 16 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(9)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6 + 1/p^7 - 1/p^8) = 0.3523622369... . - Amiram Eldar, Oct 27 2022
MATHEMATICA
f[p_, e_] := p^Ceiling[e/5]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i, 2] = ceil(f[i, 2]/5)); factorback(f); \\ Michel Marcus, Feb 15 2015
CROSSREFS
Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015053 (outer 6th root).
Cf. A013667.
Sequence in context: A015053 A062953 A347230 * A348036 A053166 A166140
KEYWORD
nonn,mult,easy
AUTHOR
R. Muller
EXTENSIONS
Corrected by David W. Wilson, Jun 04 2002
Name reworded by Jon E. Schoenfield, Oct 28 2022
STATUS
approved