%I #17 Jan 06 2024 09:20:57
%S 2,2,3,6,4,6,10,6,5,3,14,4,6,10,22,15,12,7,10,26,6,14,30,21,4,34,6,15,
%T 38,20,9,42,22,30,46,12,14,33,10,26,6,28,58,39,30,11,62,5,42,8,66,15,
%U 34,70,12,21,74,30,38,51,78,20,18,82,42,13,57,86
%N Let m = A013929(n); then a(n) = smallest k such that m divides k^3.
%H R. J. Mathar, <a href="/A015050/b015050.txt">Table of n, a(n) for n = 1..10491</a>
%H Henry Ibstedt, <a href="http://www.gallup.unm.edu/~smarandache/Ibstedt-surfing.pdf">Surfing on the Ocean of Numbers</a>, Erhus Univ. Press, Vail, 1997.
%F a(n) = A019555(A013929(n)).
%F Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * (zeta(2) * zeta(5) * Product_{p prime} (1-1/p^2+1/p^3-1/p^4) - 1)/(zeta(2)-1)^2 = 0.6611256641303... . - _Amiram Eldar_, Jan 06 2024
%p isA013929 := proc(n)
%p not numtheory[issqrfree](n) ;
%p end proc:
%p A013929 := proc(n)
%p option remember;
%p local a;
%p if n = 1 then
%p 4;
%p else
%p for a from procname(n-1)+1 do
%p if isA013929(a) then
%p return a;
%p end if;
%p end do:
%p end if;
%p end proc:
%p A015050 := proc(n)
%p local m ;
%p m := A013929(n) ;
%p for k from 1 do
%p if modp(k^3,m) = 0 then
%p return k;
%p end if;
%p end do:
%p end proc:
%t f[p_, e_] := p^Ceiling[e/3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* _Amiram Eldar_, Feb 09 2021 *)
%o (PARI) lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/3)), ", ")));} \\ _Amiram Eldar_, Jan 06 2024
%Y Cf. A013929, A015049, A015051, A019555.
%K nonn
%O 1,1
%A R. Muller
%E Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002