login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015034
q-Catalan numbers (binomial version) for q=4.
1
1, 1, 17, 4433, 18245201, 1197172898385, 1255709588423576145, 21068918017101222558779985, 5655752483351603939678821837720145, 24291387778773301588924456932322615789898321
OFFSET
0,3
LINKS
FORMULA
a(n) = binomial(2*n, n, q)/(n+1)_q, where binomial(n,m,q) is the q-binomial coefficient, with q=4.
a(n) = ((1-q)/(1-q^(n+1)))*Product_{k=0..(n-1)} (1-q^(2*n-k))/(1-q^(k+1)), with q=4. - G. C. Greubel, Nov 11 2018
MATHEMATICA
Table[3*QBinomial[2 n, n, 4]/(4^(n + 1) - 1), {n, 0, 20}] (* G. C. Greubel, Nov 11 2018 *)
PROG
(PARI) q=4; for(n=0, 20, print1(((1-q)/(1-q^(n+1)))*prod(k=0, n-1, (1-q^(2*n-k))/(1-q^(k+1))), ", ")) \\ G. C. Greubel, Nov 11 2018
(Magma) q:=4; [1] cat [((1-q)/(1-q^(n+1)))*(&*[(1-q^(2*n-k))/(1-q^(k+1)): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2018
CROSSREFS
Cf. A015030 (q=2).
Sequence in context: A329168 A194015 A015058 * A350980 A161583 A013722
KEYWORD
nonn,easy
STATUS
approved