login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015001
q-factorial numbers for q=3.
12
1, 1, 4, 52, 2080, 251680, 91611520, 100131391360, 328430963660800, 3232089113385932800, 95424198983606279987200, 8452007576574959037306265600, 2245867453247498115393020895232000, 1790317944898228845164815929864036352000
OFFSET
0,3
COMMENTS
a(n) is the number of maximal chains in the lattice of subspaces of an n-dimensional vector space over GF(3). - Geoffrey Critzer, Sep 07 2022
FORMULA
a(n) = Product_{k=1..n} (q^k - 1) / (q - 1).
a(0) = 1, a(n) = (3^n - 1)*a(n-1)/2. - Vincenzo Librandi, Oct 27 2012
a(n) = (Product_{i=0..n-1} (q^n-q^i))/((q-1)^n*q^binomial(n,2)) = A053290(n)/(A000079(n)*A047656(n)). - Geoffrey Critzer, Sep 07 2022
MATHEMATICA
RecurrenceTable[{a[1]==1, a[n]==((3^n - 1) * a[n-1])/2}, a, {n, 15}] (* Vincenzo Librandi, Oct 27 2012 *)
Table[QFactorial[n, 3], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
PROG
(Magma) [n le 1 select 1 else (3^n-1)*Self(n-1)/2: n in [1..15]]; // Vincenzo Librandi, Oct 22 2012
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 08 2021
STATUS
approved