login
a(1)=1, a(n) = n*14^(n-1) + a(n-1).
2

%I #19 Sep 08 2022 08:44:39

%S 1,29,617,11593,203673,3430617,56137369,899445401,14181546905,

%T 220792014745,3402593219481,51997375255449,789018236134297,

%U 11901025061692313,178581127445062553,2667670656370058137,39692877399129367449,588537118527090893721,8699235348529189004185

%N a(1)=1, a(n) = n*14^(n-1) + a(n-1).

%H Vincenzo Librandi, <a href="/A014929/b014929.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (29,-224,196).

%F a(n) = (1+(13n-1)*14^n)/169. O.g.f.: x/((14*x-1)^2*(1-x)). - _R. J. Mathar_, Mar 05 2008

%p A014929 := proc(n) (1+(13*n-1)*14^n)/169 ; end: seq(A014929(n),n=1..10) ; # _R. J. Mathar_, Mar 05 2008

%t Table[(1+(13n-1)*14^n)/169, {n, 20}] (* _Wesley Ivan Hurt_, Feb 26 2014 *)

%o (Magma) [(1+(13*n-1)*14^n)/169: n in [1..20]]; // _Vincenzo Librandi_, Mar 04 2014

%o (PARI) a(n) = (1+(13*n-1)*14^n)/169; \\ _Jinyuan Wang_, Mar 11 2020

%K nonn,easy

%O 1,2

%A _Olivier GĂ©rard_

%E More terms from _Vincenzo Librandi_, Mar 04 2014