login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013970
a(n) = sigma_22(n), the sum of the 22nd powers of the divisors of n.
5
1, 4194305, 31381059610, 17592190238721, 2384185791015626, 131621735227521050, 3909821048582988050, 73786993887028445185, 984770902214992292491, 10000002384185795209930, 81402749386839761113322, 552061570551763831158810, 3211838877954855105157370
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^22*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(22*e+22)-1)/(p^22-1).
Dirichlet g.f.: zeta(s)*zeta(s-22).
Sum_{k=1..n} a(k) = zeta(23) * n^23 / 23 + O(n^24). (End)
MATHEMATICA
lst={}; Do[AppendTo[lst, DivisorSigma[22, n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
a[ n_] := DivisorSigma[ 22, n]; (* Michael Somos, Dec 19 2016 *)
PROG
(Sage) [sigma(n, 22)for n in range(1, 12)] # Zerinvary Lajos, Jun 04 2009
(PARI) vector(50, n, sigma(n, 22)) \\ G. C. Greubel, Nov 03 2018
(Magma) [DivisorSigma(22, n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
KEYWORD
nonn,easy,mult
STATUS
approved