login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013299
-sinh(log(x+1)-arctanh(x)) = 1/2!*x^2 + 6/4!*x^4 + 135/6!*x^6 + 6300/8!*x^8 + ...
1
1, 6, 135, 6300, 496125, 58939650, 9833098275, 2191376187000, 628651043645625, 225615874552818750, 99022807341232149375, 52176017395434685252500, 32501310835906189355203125
OFFSET
0,2
COMMENTS
Number of degree-2n permutations without odd cycles and with odd number of even cycles, offset 1. E.g.f.: x^2/(2*sqrt(1-x^2)). - Vladeta Jovovic, Aug 10 2007
FORMULA
a(n) ~ (2*n)^(2*n+2)/exp(2*n). - Vaclav Kotesovec, Oct 24 2013
MATHEMATICA
nn = 30; Select[Range[0, nn]! CoefficientList[Series[Sinh[Log[1/(1 - x^2)^(1/2)]], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Jan 15 2012 *)
With[{nn=30}, Take[-CoefficientList[Series[Sinh[Log[x+1]-ArcTanh[x]], {x, 0, nn}], x] Range[0, nn]!, {3, -1, 2}]] (* Harvey P. Dale, Oct 30 2013 *)
CROSSREFS
Cf. A013302.
Sequence in context: A356505 A241999 A333005 * A013295 A214132 A196703
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved