login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011734
A binary m-sequence: expansion of reciprocal of x^21 + x^2 + 1 (mod 2, shifted by 20 initial 0's).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0
OFFSET
0,1
COMMENTS
Sequence is 2^21-1 = 2097151-periodic. - M. F. Hasler, Feb 17 2018
REFERENCES
S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
FORMULA
G.f. = x^20/(x^21 + x^2 + 1), over GF(2). - M. F. Hasler, Feb 17 2018
MATHEMATICA
Join[PadRight[{}, 20, 0], (Mod[#, 2]&/@CoefficientList[Series[1/(x^21+x^2+1), {x, 0, 60}], x])] (* Harvey P. Dale, Jun 01 2020 *)
PROG
(PARI) A=matrix(N=21, N, i, j, if(i>1, i==j+1, setsearch([2, N], j)>0))*Mod(1, 2); a(n)=lift((A^(n-#A+1))[1, 1]) \\ M. F. Hasler, Feb 17 2018
CROSSREFS
Cf. A011655..A011745 for other binary m-sequences, and A011746..A011751 for similar expansions over GF(2).
Sequence in context: A353482 A336355 A324731 * A276653 A355443 A011733
KEYWORD
nonn
EXTENSIONS
Edited by M. F. Hasler, Feb 17 2018
STATUS
approved