login
High temperature series for spin-1/2 Ising magnetic susceptibility on 5D simple cubic lattice.
5

%I #17 Aug 09 2022 11:00:36

%S 1,10,90,810,7210,64170,568970,5044810,44649930,395180650,3494051130,

%T 30893156970,272971707930,2411975074570,21302972395370,

%U 188151452434090,1661273238131050,14668124524584170,129481802727508250,1142991284620073450,10087904498275867530

%N High temperature series for spin-1/2 Ising magnetic susceptibility on 5D simple cubic lattice.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.

%H P. Butera and M. Pernici, <a href="https://doi.org/10.1103/PhysRevE.86.011139">High-temperature expansions of the higher susceptibilities for the Ising model in general dimension d</a>, Phys. Rev. E 86, 011139 (2012).

%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link]

%H Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine]

%H M. E. Fisher and D. S. Gaunt, <a href="https://doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964), A224-A239.

%H Misha Gofman, Joan Adler, Amnon Aharony, A. B. Harris and Dietrich Stauffer, <a href="https://doi.org/10.1007/BF01049970">Series and Monte Carlo study of high-dimensional Ising models</a>, J. Stat. Phys. 71, 1221-1230 (1993).

%Y Cf. A002906 (2D), A002913 (3D), A010556 (4D), A010580 (6D), A030008 (7D).

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Corrections and updates from _Steven Finch_

%E Terms a(16)-a(20) added using Butera & Pernici's formulas by _Andrey Zabolotskiy_, Aug 09 2022