login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009963
Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!).
17
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 72, 24, 1, 1, 120, 1440, 1440, 120, 1, 1, 720, 43200, 172800, 43200, 720, 1, 1, 5040, 1814400, 36288000, 36288000, 1814400, 5040, 1, 1, 40320, 101606400, 12192768000, 60963840000, 12192768000, 101606400, 40320, 1
OFFSET
0,5
COMMENTS
Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - Peter Luschny, Nov 26 2012
These are the generalized binomial coefficients associated to the sequence A000178. - Tom Edgar, Feb 13 2014
FORMULA
T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - Henry Bottomley, May 22 2002
Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - Gary W. Adamson, Apr 21 2008
Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - Peter Luschny, Nov 26 2012
T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - Tom Edgar, Feb 13 2014
T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - Alois P. Heinz, Jun 07 2017
T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - G. C. Greubel, Jan 04 2022
EXAMPLE
Rows start:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 24, 72, 24, 1;
1, 120, 1440, 1440, 120, 1; etc.
MATHEMATICA
(* First program *)
row[n_]:= Table[Product[i+j, {i, 1, n-k}, {j, 1, k}], {k, 0, n}];
Array[row, 9, 0] // Flatten (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *)
(* Second program *)
T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 04 2022 *)
PROG
(Sage)
def A009963_row(n):
return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)]
for n in (0..7): A009963_row(n) # Peter Luschny, Nov 26 2012
(Sage)
def triangle_to_n_rows(n): #changing n will give you the triangle to row n.
N=[[1]+n*[0]]
for i in [1..n]:
N.append([])
for j in [0..n]:
if i>=j:
N[i].append(factorial(i-j)*binomial(i-1, j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1, j)*N[i-1][j])
else:
N[i].append(0)
return [[N[i][j] for j in [0..i]] for i in [0..n]]
# Tom Edgar, Feb 13 2014
(Magma)
A009963:= func< n, k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >;
[A009963(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 04 2022
CROSSREFS
Central column is A079478.
Columns include A010796, A010797, A010798, A010799, A010800.
Row sums give A193520.
Sequence in context: A322620 A376935 A155795 * A008300 A321789 A173887
KEYWORD
nonn,tabl
STATUS
approved