login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(log(1+x)^2).
8

%I #29 May 06 2022 13:31:41

%S 1,0,2,-6,34,-220,1688,-14868,147684,-1631376,19821912,-262573080,

%T 3764276712,-58044604176,957653604672,-16828739439120,313742795670288,

%U -6183918938706048,128463999017594016,-2804979941504113248

%N Expansion of e.g.f. exp(log(1+x)^2).

%H Seiichi Manyama, <a href="/A009199/b009199.txt">Table of n, a(n) for n = 0..446</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=128">Encyclopedia of Combinatorial Structures 128</a>

%F a(n) = Sum_{k=0..floor(n/2)} Stirling1(n, 2*k)*(2*k)!/k!. - _Vladeta Jovovic_, Sep 21 2003

%F E.g.f.: (1+x)^(log(1+x)). - _Vaclav Kotesovec_, Jul 31 2018

%F a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,2) * a(n-k). - _Seiichi Manyama_, May 06 2022

%t CoefficientList[Series[E^(Log[1+x]^2), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jul 02 2015 *)

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 2, 1)*v[i-j+1])); v; \\ _Seiichi Manyama_, May 06 2022

%K sign,easy

%O 0,3

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997