login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009199
Expansion of e.g.f. exp(log(1+x)^2).
8
1, 0, 2, -6, 34, -220, 1688, -14868, 147684, -1631376, 19821912, -262573080, 3764276712, -58044604176, 957653604672, -16828739439120, 313742795670288, -6183918938706048, 128463999017594016, -2804979941504113248
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} Stirling1(n, 2*k)*(2*k)!/k!. - Vladeta Jovovic, Sep 21 2003
E.g.f.: (1+x)^(log(1+x)). - Vaclav Kotesovec, Jul 31 2018
a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,2) * a(n-k). - Seiichi Manyama, May 06 2022
MATHEMATICA
CoefficientList[Series[E^(Log[1+x]^2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 02 2015 *)
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 2, 1)*v[i-j+1])); v; \\ Seiichi Manyama, May 06 2022
CROSSREFS
Sequence in context: A253778 A346189 A018953 * A052824 A371768 A019029
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved