%I #27 Apr 19 2018 15:02:12
%S 1,1,2,5,17,65,292,1434,7875,47098,305226,2122983,15752080,124015310,
%T 1031857395,9041908204,83186138212
%N Number of increasing sequences of Goldbach type of length n; a(0) = 1 by convention.
%C From _David S. Newman_, Feb 17 2009: (Start)
%C This sequence also arises in the following way.
%C Call a set A of nonnegative integers a basis if every nonnegative integer can be written as the sum of two (not necessarily distinct) elements of A.
%C Call a basis an increasing basis if its elements are arranged in increasing order, a0 < a1 < a2 < ...
%C For example, A126684: 0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, ... is an increasing basis.
%C Now consider the set of all initial subsequences of any length {a0, a1, a2,...,an} of all the increasing bases. These can be arranged in lexicographic order, giving:
%C 0
%C 0, 1
%C 0, 1, 2
%C 0, 1, 3
%C 0, 1, 2, 3
%C 0, 1, 2, 4
%C 0, 1, 2, 5
%C 0, 1, 3, 4
%C 0, 1, 3, 5
%C ...
%C How many such subsequences are there of length n? The answer is a(n+1).
%C A Goldbach sequence is then an increasing basis without the initial zero. (End)
%C The largest value for each term in any increasing basis is given by A123509. - _Martin Fuller_, Jun 01 2010
%D M. Torelli, Increasing integer sequences and Goldbach's conjecture, preprint, 1996.
%H M. Torelli, <a href="http://dx.doi.org/10.1051/ita:2006017">Increasing integer sequences and Goldbach's conjecture</a>, RAIRO - Theoretical Informatics and Applications, vol.40, no.02 (April 2006), pp.107-121.
%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%o (PARI) A008932(n,pol=0)= { local(a=0, i, pol2);
%o !n && return(1);
%o i = #pol;
%o pol2 = pol^2;
%o for (i=#pol, #pol2+1,
%o a += A008932(n-1, pol+'x^i);
%o !polcoeff(pol2,i) && break;);
%o a } \\ _Martin Fuller_, Jun 01 2010
%Y Cf. A123509.
%K nonn,more
%O 0,3
%A Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)
%E a(9)-a(14) from _Martin Fuller_, Feb 18 2009
%E Edited by _N. J. A. Sloane_, Mar 12 2009
%E a(15)-a(16) from _Sean A. Irvine_, Apr 19 2018