login
A008743
Molien series for 3-dimensional group [3,4]+ = 432.
1
1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 5, 1, 7, 2, 8, 3, 10, 4, 12, 5, 14, 7, 16, 8, 19, 10, 21, 12, 24, 14, 27, 16, 30, 19, 33, 21, 37, 24, 40, 27, 44, 30, 48, 33, 52, 37, 56, 40, 61, 44, 65, 48, 70, 52, 75, 56, 80, 61, 85, 65, 91, 70, 96, 75, 102, 80, 108, 85, 114
OFFSET
0,5
COMMENTS
The binary quintic has four invariants of degrees 4, 8, 12, 18. Those of degrees 4, 8, 12 are algebraically independent, the one of degree 18 squares to an expression in the others. [A. E. Brouwer]
LINKS
Marko V. Jaric and Joseph L. Birman, Calculation of the Molien generating function for invariants of space groups, J. Math. Phys. 18 (1977), 1459-1465.
Kleinschmidt, Axel; Verschinin, Valentin Tetrahedral modular graph functions. J. High Energy Phys. 2017, No. 9, Paper No. 155, 38 p. (2017), eq. (3.38)
FORMULA
From Michael Somos, Oct 30 2011: (Start)
Euler transform of length 18 sequence [ 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1].
G.f.: (1 + x^9) / ((1 - x^2) * (1 - x^4) * (1 - x^6)).
a(-3 - n) = a(n).
a(2*n) = A001399(n). a(2*n + 1) = A001399(n - 4). (End)
G.f.: (1-x^3+x^6)/((1+x+x^2)*(1+x^2)*(1+x)^2*(1-x)^3). - R. J. Mathar, Dec 18 2014
EXAMPLE
G.f. = 1 + x^2 + 2*x^4 + 3*x^6 + 4*x^8 + x^9 + 5*x^10 + x^11 + 7*x^12 + 2*x^13 + 8*x^14 + ...
G.f. = 1 + q^4 + 2*q^8 + 3*q^12 + 4*q^16 + q^18 + 5*q^20 + q^22 + 7*q^24 + 2*q^26 + 8*q^28 + ...
MAPLE
seq(coeff(series((x^9+1)/((-x^2+1)*(-x^4+1)*(-x^6+1)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Aug 03 2019
MATHEMATICA
CoefficientList[Series[(1+x^9)/((1-x^2)*(1-x^4)*(1-x^6)), {x, 0, 70}], x] (* T. D. Noe, Oct 30 2011 *)
LinearRecurrence[{0, 1, 1, 1, -1, -1, -1, 0, 1}, {1, 0, 1, 0, 2, 0, 3, 0, 4}, 70] (* Harvey P. Dale, Apr 09 2019 *)
PROG
(PARI) {a(n) = round( (if( n%2, n-9, n) \ 2 + 3)^2 / 12)} /* Michael Somos, Oct 30 2011 */
(PARI) {a(n) = if( n<-1, n = -3 - n); polcoeff( (1+x^9)/(1-x^2)/(1-x^4)/(1-x^6) + x * O(x^n), n)} /* Michael Somos, Oct 30 2011 */
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1-x^2)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Aug 03 2019
(Sage) ((1+x^9)/((1-x^2)*(1-x^4)*(1-x^6))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
(GAP) a:=[1, 0, 1, 0, 2, 0, 3, 0, 4];; for n in [10..70] do a[n]:=a[n-2]+a[n-3] + a[n-4]-a[n-5]-a[n-6]-a[n-7]+a[n-9]; od; a; # G. C. Greubel, Aug 03 2019
CROSSREFS
Cf. A001399.
Sequence in context: A366601 A336836 A284976 * A029179 A008721 A008735
KEYWORD
nonn
STATUS
approved