login
A008658
Theta series of direct sum of 2 copies of D_4 lattice in powers of q^2.
3
1, 48, 624, 1344, 5232, 6048, 17472, 16512, 42096, 36336, 78624, 63936, 146496, 105504, 214656, 169344, 337008, 235872, 472368, 329280, 659232, 462336, 831168, 584064, 1178688, 756048, 1371552, 981120, 1799808, 1170720, 2201472
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 119.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 116, equ. (3) and p. 119, 10th equ.
LINKS
B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3 (1998), 257-274.
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Fourier coefficients of E_{gamma,2}^2.
Convolution square of A004011. Convolution fourth power of A108096. - Michael Somos, Aug 20 2014
G.f.: (E_4(x) + 4*E_4(x^2)) / 5 where E_4() is the g.f. of A004009. [Ramanujan]. - Michael Somos, Feb 19 2017
Expansion of(2*phi(x)^4 - phi(-x)^4)^2 in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Feb 19 2017
Expansion of phi(-x)^8 + 64*x * psi(x)^8 in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 19 2017
Expansion of (phi(-x)^4 + 8*x * psi(x^2)^4)^2 in powers of x^2 where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 19 2017
a(n) = 48*b(n) where b() is multiplicative with b(2^e) = 1 + 12*(8^e - 1) / 7, b(p^e) = (p^(3*(e+1)) - 1) / (p^3 - 1) if p>2. - Michael Somos, Feb 19 2017
EXAMPLE
G.f. = 1 + 48*x + 624*x^2 + 1344*x^3 + 5232*x^4 + 6048*x^5 + 17472*x^6 + ...
G.f. = 1 + 48*q^2+ 624*q^4 + 1344*q^6 + 5232*q^8 + 6048*q^10 + 17472*q^12 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 48 (DivisorSigma[3, n] + If[OddQ[n], 0, 4 DivisorSigma[3, n/2]])]; (* Michael Somos, Feb 19 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 48 * (sigma(n, 3) + if( n%2, 0, 4*sigma(n/2, 3))))}; /* Michael Somos, Jul 16 2004 */
(Magma) A := Basis( ModularForms( Gamma0(8), 4), 62); A[1] + 48*A[3] + 624*A[5]; /* Michael Somos, Aug 20 2014 */
CROSSREFS
KEYWORD
nonn,easy,changed
EXTENSIONS
Additional comments from Barry Brent (barryb(AT)primenet.com)
STATUS
approved