login
A008623
Molien series of 4-dimensional representation of SL(2,7).
0
1, 0, 1, 1, 3, 2, 5, 5, 9, 9, 14, 15, 22, 23, 32, 34, 45, 48, 61, 65, 81, 87, 104, 112, 133, 142, 165, 177, 204, 217, 247, 263, 297, 315, 352, 374, 415, 439, 484, 512, 561, 592, 646, 680, 739, 777, 840, 882
OFFSET
0,5
LINKS
C. L. Mallows and N. J. A. Sloane, On invariants of a linear group of order 336, Math. Proc. Camb Phil Soc., 74 (1973), 435-439.
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,0,0,0,-1,-1,1,1,1,0,-1).
FORMULA
G.f.: (x^14 + x^10 + x^9 + x^8 + x^6 + x^5 + x^4 + 1) / ((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)). - Colin Barker, Jan 08 2014
a(n) ~ 1/126*n^3. - Ralf Stephan, Apr 29 2014
MAPLE
(x^28+x^20+x^18+x^16+x^12+x^10+x^8+1)/(1-x^4)/(1-x^6)/(1-x^8)/(1-x^14);
PROG
(PARI) Vec((x^14+x^10+x^9+x^8+x^6+x^5+x^4+1)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)) + O(x^100)) \\ Colin Barker, Jan 08 2014
CROSSREFS
Sequence in context: A141732 A325695 A186545 * A035546 A339406 A182714
KEYWORD
nonn,easy
STATUS
approved