login
Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)).
1

%I #27 Apr 18 2017 07:03:05

%S 1,0,0,0,1,0,1,1,1,0,1,1,2,1,2,1,2,1,3,2,3,2,3,2,4,3,4,3,5,3,5,4,6,4,

%T 6,5,7,5,7,6,8,6,9,7,9,7,10,8,11,9,11,9,12,10,13,11,14,11,14,12,16,13,

%U 16,14,17,14,18,16,19,16,20,17,21,18,22,19,23,20,24,21,25,22,26,23,28,24,28

%N Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)).

%C Molien series of 3-dimensional representation of GL(3,2) over GF(2).

%D D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 106.

%H Vincenzo Librandi, <a href="/A008622/b008622.txt">Table of n, a(n) for n = 0..1000</a>

%H A. Adem, <a href="http://www.ams.org/notices/199707/adem.pdf">Recent developments in the cohomology of finite groups</a>, Notices Amer. Math. Soc., 44 (1997), 806-812.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=231">Encyclopedia of Combinatorial Structures 231</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 1, 1, 0, 0, -1, -1, 0, -1, 0, 0, 0, 1).

%F a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=0, a(6)=1, a(7)=1, a(8)=1, a(9)=0, a(10)=1, a(11)=1, a(12)=2, a(13)=1, a(14)=2, a(15)=1, a(16)=2, a(n)=a(n-4)+a(n-6)+a(n-7)-a(n-10)-a(n-11)-a(n-13)+a(n-17). - _Harvey P. Dale_, May 09 2013

%F a(n) ~ 1/336*n^2. - _Ralf Stephan_, Apr 29 2014

%p 1/(1-x^4)/(1-x^6)/(1-x^7);

%t CoefficientList[Series[1/((1-x^4)(1-x^6)(1-x^7)),{x,0,90}],x] (* or *) LinearRecurrence[{0,0,0,1,0,1,1,0,0,-1,-1,0,-1,0,0,0,1},{1,0,0,0,1,0,1,1,1,0,1,1,2,1,2,1,2},90] (* _Harvey P. Dale_, May 09 2013 *)

%K nonn,easy

%O 0,13

%A _N. J. A. Sloane_.