login
A008593
Multiples of 11.
77
0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 231, 242, 253, 264, 275, 286, 297, 308, 319, 330, 341, 352, 363, 374, 385, 396, 407, 418, 429, 440, 451, 462, 473, 484, 495, 506, 517, 528, 539, 550, 561, 572, 583
OFFSET
0,2
COMMENTS
Numbers for which the sum of "digits" in base 100 is divisible by 11. For instance, 193517302 gives 1 + 93 + 51 + 73 + 02 = 220, and 2 + 20 = 22 = 2 * 11. - Daniel Forgues, Feb 22 2016
LINKS
Tanya Khovanova, Recursive Sequences
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
a(n) = 11*n.
G.f.: 11*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 11*x*exp(x). - Stefano Spezia, Oct 08 2022
MAPLE
g:=(1+10*z)/((1-z)): gser:=series(g, z=0, 88): seq((coeff(gser, z, n))*n, n=0..77); # Zerinvary Lajos, Feb 25 2009
MATHEMATICA
Range[0, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
PROG
(Magma) [11*n: n in [0..60]]; // Vincenzo Librandi, Sep 18 2011
(Maxima) makelist(11*n, n, 0, 20); /* Martin Ettl, Dec 17 2012 */
(Haskell)
a008593 = (* 11)
a008593_list = [0, 11 ..] -- Reinhard Zumkeller, Jul 05 2014
(PARI) a(n)=11*n \\ Charles R Greathouse IV, Nov 06 2014
CROSSREFS
Cf. A008591, A008592, A059632; union of A135499 and A060979.
Sequence in context: A044896 A048841 A059632 * A135499 A080195 A004920
KEYWORD
nonn,easy
STATUS
approved