OFFSET
0,2
COMMENTS
Version with zeros in A053117. - Philippe Deléham, Nov 27 2013
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
LINKS
T. D. Noe, Rows n = 0..100 of triangle, flattened
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux.
Valentin Ovsienko, Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group, arXiv:2103.10800 [math.QA], 2021.
M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013
EXAMPLE
From Philippe Deléham, Nov 27 2013: (Start)
Triangle begins:
1;
2;
-1, 4;
-4, 8;
1, -12, 16;
6, -32, 32;
-1, 24, -80, 64;
-8, 80, -192, 128;
1, -40, 240, -448, 256;
10, -160, 672, -1024, 512;
-1, 60, -560, 1792, -2304, 1024;
-12, 280, -1792, 4608, -5120, 2048;
...
With zeros, triangle begins:
1;
0, 2;
-1, 0, 4;
0, -4, 0, 8;
1, 0, -12, 0, 16;
0, 6, 0, -32, 0, 32;
-1, 0, 24, 0, -80, 0, 64;
0, -8, 0, 80, 0, -192, 0, 128;
1, 0, -40, 0, 240, 0, -448, 0, 256;
0, 10, 0, -160, 0, 672, 0, -1024, 0, 512;
-1, 0, 60, 0, -560, 0, 1792, 0, -2304, 0, 1024;
0, -12, 0, 280, 0, -1792, 0, 4608, 0, -5120, 0, 2048;
...
(End)
MATHEMATICA
a[n_, k_] := Coefficient[ ChebyshevU[n, x], x, k]; row[n_] := Table[a[n, k], {k, Mod[n, 2], n, 2}]; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 03 2012 *)
CROSSREFS
KEYWORD
sign,tabf,easy,nice
AUTHOR
STATUS
approved