login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) (n >= 1, 0 <= k <= ceiling(n/2)-1) = number of permutations of [n] with k peaks.
19

%I #233 Oct 26 2024 10:47:41

%S 1,2,4,2,8,16,16,88,16,32,416,272,64,1824,2880,272,128,7680,24576,

%T 7936,256,31616,185856,137216,7936,512,128512,1304832,1841152,353792,

%U 1024,518656,8728576,21253376,9061376,353792,2048,2084864,56520704,222398464,175627264,22368256

%N Triangle read by rows: T(n,k) (n >= 1, 0 <= k <= ceiling(n/2)-1) = number of permutations of [n] with k peaks.

%C From _Petros Hadjicostas_, Aug 06 2019: (Start)

%C André (1895) first defined these numbers. In his notation, T(n, k) = Q(n+1, 2*(k+1)) for n >= 1 and 0 <= k <= ceiling(n/2)-1.

%C His triangle is as follows (p. 148):

%C Q_{2,2}

%C Q_{3,2}

%C Q_{4,2} Q_{4,4}

%C Q_{5,2} Q_{5,4}

%C Q_{6,2} Q_{6,4} Q_{6,6}

%C Q_{7,2} Q_{7,4} Q_{7,6}

%C ...

%C He has Q(n, s) = 0 when either s is odd, or n <= 1, or s > n. Also, Q_{n,2} = 2^(n-2) for n >= 2.

%C His recurrence is Q(n, s) = s * Q(n-1, s) + (n - s + 1) * Q(n-1, s-2) for n >= 3 and s >= 2. (Obviously, for s odd, we get Q(n, s) = 0 + 0 = 0.)

%C In terms of the current array, André's (1895) recurrence becomes T(n, k) = (2*k + 2) * T(n-1, k) + (n - 2*k) * T(n-1, k-1) for n >= 2 and 1 <= k <= n with T(n, 0) = 2^(n-1) for n >= 1. In this recurrence, we assume T(n, k) = 0 for k >= ceiling(n/2) or k < 0.

%C (End)

%C From _Petros Hadjicostas_, Aug 07 2019: (Start)

%C We clarify further the quantity Q(n, s) defined by André (1895). In his paper, André considers circular permutations of [n] and deals with maxima, minima, and so-called "séquences" in a permutation.

%C The term "séquence" in a permutation, as used by André in several of his papers in the 19th century, means a list of consecutive numbers in the permutation that go from a maximum to a minimum, or vice versa, and do not contain any interior minima or maxima. This terminology is also repeated in Ex. 13 (pp. 260-261) by Comtet (even though he refers to the corresponding indices rather than the numbers in the permutation itself).

%C Some authors call these so-called "séquences" (defined by André and Comtet) "alternate runs" (or just "runs"). Here we are actually dealing with "circular runs" if we read these so-called "séquences" in ascending order in one of the two directions on a circle.

%C Q(n, s) is the number of circular permutations of [n] (out of the (n-1)! in total) that have exactly s of these so-called "séquences" ("alternate runs").

%C André (1895) proves that, in a circular permutation of [n], the number of maxima equals the number of minima and that the number of his so-called "séquences" ("alternate runs") is always even (i.e., Q(n, s) = 0 for s odd).

%C He also shows that, if v = floor(n/2), then the only possible values for the length of a so-called "séquence" ("alternate run") in a circular permutation of [n] are 2, 4, ..., 2*v. That is why Q(n, s) = 0 when either s is odd, or n <= 1, or s > n.

%C Note that Sum_{t = 1..floor(n/2)} Q_{n, 2*t} = Sum_{t = 1..floor(n/2)} T(n-1, t-1) = (n-1)! = total number of circular permutations of [n].

%C Since T(n, k) = Q(n+1, 2*(k+1)) for n >= 1 and 0 <= k <= ceiling(n/2)-1, we conclude that the number of (linear) permutations of [n] with k peaks equals the number of circular permutations of [n+1] with exactly 2*(k+1) of these so-called "séquences" ("alternate runs").

%C (End)

%C From _Petros Hadjicostas_, Aug 08 2019: (Start)

%C The author of this array indirectly assumes that a "peak" of a (linear) permutation of [n] is an interior maximum of the permutation; i.e., we ignore maxima at the endpoints of a permutation.

%C Similarly, a "valley" of a (linear) permutation of [n] is an interior minimum of the permutation; i.e., we ignore minima at the endpoints of the permutation.

%C Since the complement of a permutation a_1 a_2 ... a_n (using one-line notation, not cycle notation) is (n+1-a_1) (n+1-a_2) ... (n+1-a_n), it follows that, for n >= 2 and 0 <= k <= ceiling(n/2) - 1, T(n, k) is also the number of (linear) permutations of [n] with exactly k valleys.

%C (End)

%D Florence Nightingale David and D. E. Barton, Combinatorial Chance, Charles Griffin, 1962; see Table 10.6, p. 163. [They use the notation T_{N,t^*}^{**}, where N is the length of the permutation and t^* is the number of peaks in the permutation. They also give André's recurrence. So, here n = N and k = t^*. - _Petros Hadjicostas_, Aug 09 2019]

%D Florence Nightingale David, Maurice George Kendall, and D. E. Barton, Symmetric Functions and Allied Tables, Cambridge, 1966, p. 261, Table 7.3.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.46. - _Emeric Deutsch_, Jul 26 2009

%D T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 4.

%H Alois P. Heinz, <a href="/A008303/b008303.txt">Rows n = 1..200, flattened</a> (first 30 rows from Vincenzo Librandi)

%H Max A. Alekseyev, <a href="https://arxiv.org/abs/1205.4581">On the number of permutations with bounded run lengths</a>, arXiv preprint arXiv:1205.4581 [math.CO], 2012-2013. - From _N. J. A. Sloane_, Oct 23 2012

%H Désiré André, <a href="https://doi.org/10.24033/bsmf.519">Mémoire sur les séquences des permutations circulaires</a>, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.

%H T. Austin, R. Fagen, T. Lehrer, and W. Penney, <a href="https://projecteuclid.org/euclid.aoms/1177706893">The distribution of the number of locally maximal elements in a random sample</a>, Ann. Math. Statist. 28 (1957), 786-790. - _Ira M. Gessel_, Aug 06 2014

%H Jean-Luc Baril and José L. Ramírez, <a href="https://arxiv.org/abs/2410.15434">Some distributions in increasing and flattened permutations</a>, arXiv:2410.15434 [math.CO], 2024. See p. 3.

%H S. Billey, K. Burdzy, and B. E. Sagan, <a href="http://arxiv.org/abs/1209.0693">Permutations with given peak set</a>, arXiv: 1209.0693 [math.CO], 2012.

%H S. Billey, K. Burdzy, and B. E. Sagan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Billey/billey2.html">Permutations with given peak set</a>, J. Int. Seq. 16 (2013), #13.6.1.

%H C.-O. Chow and S.-M. Ma, <a href="https://doi.org/10.1016/j.disc.2014.01.015 ">Counting signed permutations by their alternating runs</a>, Discrete Mathematics, 323 (2014), 49-57.

%H C.-O. Chow, S.-M. Ma, T. Mansour, and M. Shattuck, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_43_from43to54.pdf">Counting permutations by cyclic peaks and valleys</a>, Annales Mathematicae et Informaticae 43 (2014), 43-54.

%H Kieran Clenaghan, <a href="https://arxiv.org/abs/1812.05878">In Praise of Sequence (Co-)Algebra and its implementation in Haskell</a>, arXiv:1812.05878 [math.CO], 2019. See page 36.

%H Colin Defant, <a href="https://arxiv.org/abs/2004.11367">Troupes, Cumulants, and Stack-Sorting</a>, arXiv:2004.11367 [math.CO], 2020.

%H Ming-Jian Ding and Bao-Xuan Zhu, <a href="https://doi.org/10.1016/j.aam.2023.102591">Some results related to Hurwitz stability of combinatorial polynomials</a>, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 13.

%H S. Elizalde and M. Noy, <a href="https://doi.org/10.1016/S0196-8858(02)00527-4 ">Consecutive patterns in permutations</a>, Adv. Appl. Math. 30 (2003), 110-125; see Section 5.

%H R. C. Entringer, <a href="https://projecteuclid.org/euclid.dmj/1077378476">Enumeration of permutations of (1,...,n) by number of maxima</a>, Duke Math. J. 36 (1969), 575-579. - Ira M. Gessel, Oct 23 2013

%H C. J. Fewster and D. Siemssen, <a href="http://arxiv.org/abs/1403.1723">Enumerating Permutations by their Run Structure</a>, arXiv preprint arXiv:1403.1723 [math.CO], 2014.

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000023">The number of inner peaks of a permutation</a>, <a href="http://www.findstat.org/StatisticsDatabase/St000092">The number of peaks of a permutation</a>, <a href="http://www.findstat.org/StatisticsDatabase/St000099">The number of valleys of a permutation</a>.

%H W. O. Kermack and A. G. McKendrick, <a href="https://doi.org/10.1017/S0370164600013821">Some distributions associated with a randomly arranged set of numbers</a>, Proc. Royal Soc. of Edinburgh 67 (1937), 332-376.

%H W. O. Kermack and A. G. McKendrick, <a href="http://www.jstor.org/stable/3607448">Some properties of points arranged on a Möbius surface</a>, Mathematical Gazette 22 (1938), 66-72.

%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1106.5781">Derivative polynomials and permutations by numbers of interior peaks and left peaks</a>, arXiv preprint arXiv:1106.5781 [math.CO], 2011.

%H Shi-Mei Ma, <a href="https://doi.org/10.1016/j.disc.2013.05.010">Enumeration of permutations by number of alternating runs</a>, Discrete Math., 313 (2013), 1816-1822.

%H S.-M. Ma, T. Mansour, and D. G. L. Wang, <a href="http://arxiv.org/abs/1403.0233">Combinatorics of Dumont differential system on the Jacobi elliptic functions</a>, arXiv preprint arXiv:1403.0233 [math.CO], 2014.

%H Shi-Mei Ma, Toufik Mansour, David G.L. Wang, and Yeong-Nan Yeh, <a href="https://www.math.sinica.edu.tw/www/file_upload/mayeh/2018SCM-2016-0688.pdf">Several variants of the Dumont differential system and permutation statistics</a>, Science China Mathematics 60 (2018).

%H Shi-Mei Ma, Jun Ma, Jean Yeh, and Yeong-Nan Yeh, <a href="https://arxiv.org/abs/2001.07833">The 1/k-Eulerian polynomials of type B</a>, arXiv:2001.07833 [math.CO], 2020.

%H A. Mendes and J. B. Remmel, <a href="https://doi.org/10.1016/j.aam.2005.09.005 ">Permutations and words counted by consecutive patterns</a>, Adv. Appl. Math. 37(4) (2006), 443-480.

%H Tom Roberts and Thomas Prellberg, <a href="https://arxiv.org/abs/2401.12201">Improving Convergence of Generalised Rosenbluth Sampling for Branched Polymer Models by Uniform Sampling</a>, arXiv:2401.12201 [cond-mat.stat-mech], 2024. See p. 14.

%H Louis W. Shapiro, Wen-Jin Woan, and Seyoum Getu, <a href="https://doi.org/10.1137/0604046">Runs, slides and moments</a>, SIAM J. Algebraic and Discrete Methods 4 (1983), 459-466; see p. 461.

%H Bao-Xuan Zhu, <a href="https://arxiv.org/abs/2007.14924">Stieltjes moment properties and continued fractions from combinatorial triangles</a>, arXiv:2007.14924 [math.CO], 2020, see p. 27.

%H Yan Zhuang, <a href="http://arxiv.org/abs/1505.02308">Monoid networks and counting permutations by runs</a>, arXiv preprint arXiv:1505.02308 [math.CO], 2015.

%H Yan Zhuang, <a href="https://doi.org/10.1016/j.jcta.2016.04.002">Counting permutations by runs</a>, J. Comb. Theory Ser. A 142 (2016), pp. 147-176.

%F From _Emeric Deutsch_, Jul 26 2009: (Start)

%F E.g.f.: G(t,z)=[exp(bz)-exp(az)]/[b*exp(az)-a*exp(bz)], where a+b=2 and ab=t, i.e., a=1+sqrt(1-t), b=1-sqrt(1-t) (see the Goulden-Jackson reference). -

%F Sum_{k>=0} k*T(n,k) = n!*(n-2)/3 = A090672(n-1).

%F Row n has ceiling(n/2) terms. (End)

%F E.g.f.: tan(t*sqrt(x-1))/(sqrt(x-1)-tan(t*sqrt(x-1))) = Sum_{n>=0} P(n,x)*t^n/n! = t + 2*t^2/2! + (4+2*x)*t^3/3! + (8+16*x)*t^4/4! + .... The row generating polynomials P(n,x) satisfy x^(n-1)*P(n,1+1/x^2) = R(n-1,x), where R(n,x) are the row polynomials of A185896. A000670(n) = (3/2)^(n-1)*P(n,8/9). - _Peter Bala_, Oct 14 2011

%F From _Jinyuan Wang_, Dec 28 2020: (Start)

%F T(n, k) = (n - 2*k + 2)*T(n-1, k-1) + 2*k*T(n-1, k) for n > 1 and k > 1; T(n, 1) = 2^(n - 1); T(1, k) = 0 for k > 1.

%F T(2*k-1, k) = A000182(k). (End)

%F From _Ammar Khatab_, Aug 17 2024: (Start)

%F T(2*n,k) = 4^(n-k+1)* Sum_{p=0..k} (-1)^p * (2*p+2*n-2*k-1)/(p+2*n-2*k-1) binomial(p+2*n-2*k-1,p) (A008292(2*n,k-p+1)+A008292(2*n,2*n+p-k) ) for n>0.

%F T(2*n+1,k) = 4^(n-k)* Sum_{p=0..k} (-1)^p * (p+n-k)/(p+2*n-2*k) binomial(p+2*n-2*k,p) (A008292(2*n+1,k-p+1)+A008292(2*n,2*n+p-k+1) ) for k<>n. (End)

%e Triangle T(n,k) (with rows n >= 1 and columns k >= 0) starts as follows:

%e [ 1] 1;

%e [ 2] 2;

%e [ 3] 4, 2;

%e [ 4] 8, 16;

%e [ 5] 16, 88, 16;

%e [ 6] 32, 416, 272;

%e [ 7] 64, 1824, 2880, 272;

%e [ 8] 128, 7680, 24576, 7936;

%e [ 9] 256, 31616, 185856, 137216, 7936;

%e [10] 512, 128512, 1304832, 1841152, 353792;

%e A000079, A000431, A000487, A000517, A179708, ...

%e T(3,1) = 2 because we have 132 and 231.

%e From _Petros Hadjicostas_, Aug 07 2019: (Start)

%e In terms of André's (1895) notation (see the comments above), we have Q(4, 2) = T(3, 0) = 4 and Q(4, 4) = T(3, 1) = 2.

%e Out of the (4-1)! = 6 circular permutations of [4], each of the permutations 1324 and 1423 has exactly 4 so-called "séquences" ("alternate runs"), while each of the rest (1234, 1243, 1342, and 1432) has exactly 2 so-called "séquences" ("alternate runs").

%e In detail, we list the so-called "séquences" ("alternate runs") of the above circular permutations:

%e 1234 --> 1234 and 41 (maximum 4 and minimum 1).

%e 1243 --> 124 and 431 (maximum 4 and minimum 1).

%e 1324 --> 13, 32, 24, and 41 (maxima 3, 4, and minima 1, 2).

%e 1342 --> 134 and 421 (maximum 4 and minimum 1).

%e 1423 --> 14, 42, 23, and 31 (maxima 3, 4 and minima 1, 2),

%e 1432 --> 14 and 4321 (maximum 4 and minimum 1).

%e (End)

%p # The Maple program yields (by straightforward counting) the generating polynomial of the row n specified in the program.

%p n := 8: with(combinat): P := permute(n): st := proc (p) local ct, j: ct := 0: for j from 2 to nops(p)-1 do if p[j-1] < p[j] and p[j+1] < p[j] then ct := ct+1 else end if end do: ct end proc: sort(add(t^st(P[j]), j = 1 .. factorial(n))); # _Emeric Deutsch_, Jul 26 2009

%p # Second Maple program:

%p a := 1+sqrt(1-t): b := 1-sqrt(1-t): G := (exp(b*z)-exp(a*z))/(b*exp(a*z)-a*exp(b*z)): Gser := simplify(series(G, z = 0, 15)): for n to 12 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n to 12 do seq(coeff(P[n], t, j), j = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form - _Emeric Deutsch_, Jul 26 2009

%p # Third Maple program:

%p b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,

%p add(b(u-j, o+j-1, 0)*x^t, j=1..u)+

%p add(b(u+j-1, o-j, 1), j=1..o)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):

%p seq(T(n), n=1..15); # _Alois P. Heinz_, May 22 2014

%p # Recurrence of D. André (1895).

%p T := proc(n, k) option remember;

%p if n < 1 or 2*k > (n-1) then return 0 fi;

%p if k = 0 then return 2^(n-1) fi;

%p (2*k + 2)*T(n-1, k) + (n - 2*k)*T(n-1, k-1) end:

%p seq(seq(T(n, k), k=0..(n-1)/2), n=1..12); # _Peter Luschny_, Aug 06 2019

%t From Luc Roy, Jul 08 2010: (Start)

%t It appears that one-half of the sequence A008303 can be obtained with this Mathematica program:

%t Expand[CoefficientList[Simplify[InverseSeries[Integrate[

%t Series[(1 + m Sinh[x]^2)^(-1), {x, 0, 15}, {m, 0, 15}], x]]], x]

%t Denominator[CoefficientList[Series[Exp[x], {x, 0, 15}], x]]]

%t (* Mathematica Output of Luc Roy's program *)

%t {0, 1, 0, 2 m, 0, 8 m + 16 m^2, 0, 32 m + 416 m^2 + 272 m^3, 0, 128 m + 7680 m^2 + 24576 m^3 + 7936 m^4, 0, 512 m + 128512 m^2 + 1304832 m^3 + 1841152 m^4 + 353792 m^5, 0, 2048 m + 2084864 m^2 + 56520704 m^3 + 222398464 m^4 + 175627264 m^5 + 22368256 m^6, 0, 8192 m + 33497088 m^2 + 2230947840 m^3 + 20261765120 m^4 + 41731645440 m^5 + 21016670208 m^6 + 1903757312 m^7}

%t (End)

%t (* Another Mathematica program *)

%t m = 14; a = 1 + Sqrt[1 - t]; b = 1 - Sqrt[1 - t];

%t g[z_] = (E^(b*z) - E^(a*z))/(b*E^(a*z) - a*E^(b*z));

%t gser = Series[g[z], {z, 0, m}];

%t Do[p[n]=n!*Coefficient[gser, z, n]//Simplify, {n, 0, m}];

%t Flatten[ Table[ Coefficient[p[n], t, j], {n, 0, m}, {j, 0, Ceiling[n/2] - 1}]]

%t (* _Jean-François Alcover_, May 27 2011, after _Emeric Deutsch_ *)

%t (* To get the triangle from _Jean-François Alcover_'s Mathematica program *)

%t FormTable[Table[Coefficient[p[n], t, j], {n, 0, m}, {j, 0, Ceiling[n/2] - 1}]]

%t (* _Petros Hadjicostas_, Aug 06 2019 *)

%t gf := Sqrt[x - 1] Cot[y Sqrt[x - 1]] - 1; ser := Series[1/gf, {y, 0, 16}];

%t cy[n_] := n! Coefficient[ser, y, n]; row[n_] := CoefficientList[cy[n], x];

%t Table[row[n], {n, 1, 12}] // Flatten (* _Peter Luschny_, Aug 06 2019 *)

%o (C++)

%o #include <vector>

%o #include <iostream>

%o using namespace std;

%o int peaks(const vector<int> & perm) {

%o int pks=0;

%o for(int i=1 ; i < perm.size()-1; i++)

%o if ( perm[i]>perm[i+1] && perm[i]> perm[i-1] ) pks++;

%o return pks ;

%o }

%o int main(int argc, char *argv[]) {

%o int n=1;

%o if ( argc > 1 ) n=atoi(argv[1]);

%o int nmax = n+12;

%o if ( argc > 2 ) nmax=atoi(argv[2]);

%o for (; n < nmax ; n++) {

%o const int kmax = (n+1)/2;

%o vector<int> Tnk(kmax);

%o vector<int> perm(n);

%o for(int i=0 ; i < n ; i++) perm[i]=i+1;

%o int pks = peaks(perm);

%o Tnk[pks]++;

%o while ( next_permutation(perm.begin(), perm.end()) ) {

%o pks = peaks(perm);

%o Tnk[pks]++;

%o }

%o for (int i=0; i < Tnk.size(); i++) cout << Tnk[i] << ", " ;

%o }

%o }

%o /* _R. J. Mathar_, Jun 26 2007 */

%o (PARI) {T(n, k) = if(n<1, 0, my(z = sqrt(1 - y + y*O(y^(n\2)))); n!*polcoef(polcoef(z/(z - tanh(x*z)), n, x), k))}; /* _Michael Somos_, May 24 2023 */

%Y From _Emeric Deutsch_, Jul 26 2009: (Start)

%Y Sum of entries in row n is n! = A000142(n).

%Y T(n,0) = 2^(n-1) = A000079(n-1).

%Y T(n,1) = A000431(n).

%Y T(n,2) = A000487(n).

%Y T(n,3) = A000517(n).

%Y T(2n, n-1) = T(2n+1, n) = A000182(n+1) (the tangent numbers). (End)

%Y Columns k = 0-6 give: A011782, A000431, A000487, A000517, A179708, A179709, A179710.

%Y Cf. A000111, A000182, A090672, A101280, A185896, A242783, A242784.

%K nonn,tabf

%O 1,2

%A _N. J. A. Sloane_

%E Additional comments from _Emeric Deutsch_, May 08 2004

%E More terms from _R. J. Mathar_ and _Vladeta Jovovic_, Jun 26 2007

%E Corrected by _Emeric Deutsch_, Jul 26 2009

%E Edited definition - _N. J. A. Sloane_, May 25 2023